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Abstract. Self-organization, or decentralized control, is

widespread in biological systems, including cells, organ-

isms, and groups. It is not, however, the universal means of

organization. I argue that a biological system will be self-

organized when it possesses a large number of subunits, and

these subunits lack either the communicational abilities or

the computational abilities, or both, that are needed to

implement centralized control. Such control requires a well

informed and highly intelligent supervisor. I stress that the

subunits in a self-organized system do not necessarily have

low cognitive abilities. A lack of preadaptations for evolv-

ing a system-wide communication network can prevent the

evolution of centralized control. Hence, sometimes even

systems whose subunits possess high cognitive abilities will

be self-organized.

Introduction

Self-organization is widespread in biological systems.

That is to say, it is common to find biological systems that

function without guidance from an external controller, or

even from an internal control center. Instead, we often find

that biological systems function with mechanisms of decen-

tralized control in which the numerous subunits of the

system the molecules of a cell, the cells of an organism, or

the organisms of a group adjust their activities by them-

selves on the basis of limited, local information. An apple

tree, for example, "wisely" allocates its resources among

woody growth, leaves, and fruits without a central manager
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of its cells. Likewise, an ant colony "intelligently" distrib-

utes its work force among such needs as brood rearing,

colony defense, and nest construction without an omniscient

overseer of its workers. Much of the challenge in under-

standing the inner workings of living systems arises from

their use of decentralized control mechanisms, which are

harder for the human mind to grasp than centralized control

mechanisms. This is why mathematical models, computer

simulations, and the other tools used by investigators of

self-organization (Bonabeau et ai. 1997: Camazine et <//.,

2001 ) are helpful in building a solid understanding of how

living things work.

Given that self-organization is widespread in biological

systems, the question arises of why this is the case. In this

essay, I will share my thoughts on this issue. My views

derive partly from what I have learned through studying one

of nature's most accessible self-organized systems, the

honeybee colony, and partly from what I have learned

through reading various works in the fields of biology,

economics, and engineering.

The biological systems I will be considering are all ones

in which the genetics interests of the system's subunits are

largely, if not entirely, congruent; hence the subunits coop-

erate closely for the effective functioning of the system as a

whole. Such systems are what Dawkins (1982) has called

vehicles: thoroughly integrated entities that have evolved to

foster the survival and reproduction of the genes they con-

tain. These systems include single-celled creatures, multi-

cellular organisms, and even some animal societies, such as

colonies of honeybees and army ants. Hence, this essay

relates to the general issue in biology of how functionally

integrated entities arise, or individuation occurs, at various

hierarchical levels (Maynard Smith and Szathmary, 1995;

Seeley, 1995; Bonner, 1998; Sober and Wilson. 1998;

Keller, 1999; Michod, 1999; Wilson, 1999). In addressing

the question of where self-organization occurs in biological
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systems, we examine an issue that applies across the hier-

archical spectrum.

The Importance of Communicational and

Computational Abilities

My basic argument is this: a biological system will be

self-organized if it consists of a large number of subunits,

and these subunits do not possess the communicational and

computational abilities needed to implement centralized

control, which necessarily involves a well informed and

highly intelligent supervisor.

As Friedrich von Hayek (1945) and Herbert Simon

(1962) pointed out long ago, centralized control of any large

system requires ( 1 ) that a tremendous amount of informa-

tion usually dispersed among all the subunits of the sys-

tem be communicated to a central decision-making body

(one subunit or a group of subunits), (2) that this body

integrate all this information to decide a course of action,

and (3) that it then issue instructions to the other subunits in

the system. When we look across the range of functionally

integrated entities in nature, we see that some have indeed

evolved the sophisticated communicational and computa-
tional mechanisms required for some degree of centralized

control. In the adult form of many metazoan organisms, for

example, we find an elaborate peripheral nervous system
that makes possible the rapid transmission of information

throughout the organism, and a sophisticated central ner-

vous system that processes the sensory input and decides

most of the motor output for the organism. Likewise, in

some of the colonial marine invertebrates, particularly the

swimming colonies of the Siphonophora, we find a colony-

wide network of nerves and a simple brain that together

support a rudimentary level of centralized control of the

propulsion zooids within a colony (Mackie, 1986). And,

obviously, we humans have developed sophisticated com-

municational and computational technologies that make it

possible for certain human groups, notably military and

manufacturing units, to function with a high level of cen-

tralized, hierarchical control (Bartholdi. 1993).

Besides these biological systems that function with some

degree of centralized control, there are many others that

operate with little or no central authority. These are self-

organizing systems. Their subunits have not evolved either

broad communicational networks or powerful computa-
tional abilities: thus it is not surprising that they operate

without central planning. For instance, no species of social

insect has evolved anything like a colony- wide communi-

cational network that would enable information to flow

rapidly and efficiently to and from a central manager. More-

over, no individual within a social insect colony is capable

of processing huge amounts of information. (Contrary to

popular belief, the queen of a colony is not an omniscient

individual that issues orders; rather, she is an oversized

individual that lays eggs. The biblical King Solomon was

correct when he noted, in reference to ant colonies, there is

"no guide, overseer, or ruler" [Proverbs 6:7]). Therefore, it

is not surprising that social insects with large colonies

provide us with striking examples of self-organized sys-

tems. Other good examples in biology are multicellular

animals during development that is, before they have as-

sembled their communicational networks (peripheral ner-

vous systems) and central computers (central nervous sys-

tems): plants at all levels of evolutionary sophistication

(nonvascular and vascular forms): and bacterial colonies

(reviewed in Camazine et /.. 2001; see also Shapiro and

Dworkin, 1998).

Why Is There Self-Organization?

Given that some biological systems have evolved cen-

tralized control, it is clear that self-organization is not al-

ways the best means of coordinating the subunits in a

system. The absence of a central authority leaves a system

(of molecules, of cells, or of organisms) prone to opposing

actions among its subunits. for they will respond to their

different, local conditions rather than to the shared, global

situation of the system as a whole. Colonies of social insects

frequently experience this problem, such as when an ant

colony changes nest sites and some workers carry brood

items out of the old site while others carry them back in

again (Wilson, 1971. p. 224). Also, when no one is super-

vising a system, needless redundancies are apt to arise

within it. The IBM corporation experienced precisely this

problem in the 1980s when it decentralized its operations

and costly duplications of activities arose among its divi-

sions (Drucker, 1988). Furthermore, the absence of a cen-

tralized authority within a system can limit its ability to find

the globally optimal solution to a problem and can even

render it vulnerable to getting stuck in a pathological state.

A gruesome example of this is the "circular mill" of Eciton

army ants in Guyana that William Beebe (1921; cited in

Anderson and Bartholdi, 2000) described: a circle, measur-

ing some 100 m in diameter and lasting for two days, of ants

continuously following each other round and round, and

gradually dying from exhaustion. In short, systems with

decentralized control can easily lack "the vision thing."

Despite the potential problems of decentralized control

(self-organization), many biological systems do rely on it.

One can ask whether these systems have been unable to

evolve mechanisms of communication and computation suf-

ficient to support centralized control (i.e., centralized con-

trol is an adaptive peak, but one that is hard to reach) or

whether they have experienced selection pressures that fa-

vor low communicational abilities or low computational

abilities, or both (i.e.. centralized control is nor an adaptive

peak). I believe that the first reason explains the widespread

existence of self-organization in social insect colonies. The
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subunits in these colony-level systems, unlike those in or-

ganism-level and cell-level systems, do not form stable,

physical connections. With the exception of human groups,

which possess advanced technologies for communication,

all biological systems with powerful communication net-

works have their subunits arranged in stable configurations

with solid connections between the subunits. Such spatial

stability and connectivity evidently facilitates the evolution

of a system-wide communication network. Thus it appears

that colonies of social insects, whose workers typically

move about within the nest, lack a crucial preadaptation for

evolving sophisticated, colony-wide communication sys-

tems.

The second possible reason for decentralized control, that

it is more adaptive than centralized control, may apply in

situations where the high costs of centralized control are not

compensated by high benefits. Certainly there are high costs

to having the sophisticated communicational and computa-

tional abilities that underlie centralized control. Just con-

sider the high metabolic costs of maintaining the nervous

system of a metazoan organism, or the high financial costs

of maintaining the industrial engineering department of a

manufacturing enterprise. One American food distributor,

for example, employs two engineers and one programmer to

maintain the work-content models for managing their ware-

houses, at a cost of $250.000 annually (B. Little. Manhattan

Associates, cited in Anderson and Bartholdi, 2000). For

centralized control to evolve, such high costs must be out-

weighed by high benefits. It is not hard to imagine situations

where there are actually low benefits to having centralized

control. One is when a biological system is highly suscep-

tible to the loss of subunits. perhaps through predation or

disease. In a system with centralized control, the loss of the

central manager can result in a catastrophic failure of the

entire system. In contrast, systems with decentralized con-

trol are generally robust to the loss of subunits. Anderson

and Bartholdi (2000) compare the characteristics of central-

ized and decentralized control paradigms and discuss the

logistical situations in which each type of control is likely to

yield high benefits. Their article focuses on manufacturing

operations, but because it is inspired by the ways that social

insects have solved problems of colony organization, it has

much relevance to biological systems.

Self-Organization and the Cognitive Abilities

of Subunits

I have presented the view that high communicational and

computational abilities in a system's subunits are essential

for the evolution of centralized control in large systems, for

without such abilities centralized control cannot be imple-

mented. This view implies that biological systems whose

suhunits lack broad communicational abilities or sophisti-

cated computational (cognitive) abilities, or both, must

function with decentralized control. I wish to stress, how-

ever, that the subunits in a self-organized system do not

necessarily have low cognitive abilities. The subunits might

possess cognitive abilities that are high in an absolute sense,

but low relative to what is needed to effectively supervise a

large system. A human being, for example, is an intelligent

subunit in the economy of a nation, but no human possesses

the information-processing abilities that are needed to be a

successful central planner of a nation's economy. It is also

possible that the subunits possess high cognitive abilities,

but are in a system that lacks an extensive communication

network. Such subunits would be highly intelligent, but

poorly informed. A worker honeybee, for example, is an

intelligent creature (see below) that functions in a system

that lacks a communication network capable of supporting

centralized control.

It is important to consider the issue of the cognitive

abilities of the subunits in decentralized (self-organized)

systems because it points to a fundamental flaw in many
studies of self-organization: the assumption that the sub-

units in a self-organized system are dumb. This viewpoint is

generally expressed in terms of "simple individuals" (e.g..

Goss and Deneubourg. 1988: Strickland et til., 1993) fol-

lowing "very simple rules of behavior" (e.g., Camazine et

til., 1990; Jenkins et til., 1992: Strickland ct til.. 1992) or

executing "simple stimulus-response acts" (Camazine et al.,

2001, p. 488). It is certainly true that many studies have

shown that decentralized control can produce complexity at

the system level for example, the intricate nests and for-

aging operations of social insect colonies without need for

comparable complexity at the individual level (Theraulaz

and Bonabeau. 1995; Bonabeau, 1998; Theraulaz ct til.,

1998; Karsai. 1999). This does not, however, prove that the

subunits in the systems studied lack behavioral complexity

and high cognitive abilities; it indicates only that the sub-

units did not show complexity in these studies, most of

which involve a deliberate simplification or even a mere

simulation of reality.

The implicit assumption of dumb subunits underlying

most studies of self-organization could be tested for social

insects by looking at individual complexity in relation to

colony size. If individual complexity decreases as colony

size (and decentralization/self-organization) increases, the

dumb subunits paradigm gains credence. However, there is

no compelling evidence of an inverse relation between

individual complexity and colony size (Anderson and Mc-

Shea, 2001 ). The workers of large colonies do show a loss

of totipotency. especially with respect to reproductive po-

tential (Crespi and Yanega, 1995; Bourke, 1999), and they

do show a loss of structures associated with reproduction

(e.g., ovaries in ants); but they do not show signs of reduced

behavioral or cognitive complexity. Indeed, one can make a

strong argument that the cognitive complexity of individu-

als needs to be greater in species with large colonies than in
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those with small colonies, especially when the workers do

not have lifelong task specializations (e.g., physical poly-

ethism) hut instead perform different tasks at different

stages of life (e.g., temporal polyethism). As colony size

evolves to higher levels, new ecological opportunities and

problems arise that can favor the evolution of additional

behaviors, such as recruiting to food sources, activities for

fighting diseases, colonial thermoregulation measures, and

coordinated ambushing of prey. Also, new. more efficient

ways of organizing work can evolve, such as task partition-

ing (Jeanne. 1986: reviewed by Ratnieks and Anderson,

1999) and teamwork (Anderson and Franks, 2001): and

these necessitate the evolution of behavioral mechanisms

for coordinating the individuals working together on a task.

Bonner ( 1988) makes similar arguments for systems of cells

in the evolution of multicellular organisms: as the size of an

assemblage of cells increases, new opportunities and new

needs arise for more sophisticated methods of food acqui-

sition, gas exchange, and internal circulation.

My view that self-organized systems can be composed of

subunits possessing high cognitive abilities is based on my
experience in analyzing the functional organization of

honeybee colonies. These are large biological systems that

function with decentralized control (Seeley, 1995) and that

are composed of subunits worker bees whose cognitive

sophistication is certainly impressive. One indication of this

sophistication is the large number of signals (17) and cues

(34) that we know workers are sensitive to inside a hive

(reviewed in Seeley, 1998). Another indication is the re-

markable behavioral versatility of worker bees and their

impressive ability to integrate information when deciding

how to behave; they do not follow "very simple rules of

behavior" or execute "simple stimulus-response acts." Con-

sider, for example, the actions of a worker bee scouting a

nest site, starting when she has discovered a promising tree

cavity. She first spends 20-40 minutes inspecting the site,

acquiring information about the cavity's volume, the size of

its entrance, its height off the ground, its exposure to sun

and wind, and still other variables (Seeley. 1977; Seeley and

Morse, 1978). In short, she makes a multifactorial evalua-

tion of her find. She then integrates the information that she

has acquired about her site to determine its overall desir-

ability as a future dwelling place. Next, she returns to the

swarm cluster, where she performs a waggle dance to ad-

vertise her site to the other scout bees (Lindauer. 1955).

Because the recruitment target is small, just the entrance

opening to her site, she adopts a special form of the dance;

she produces waggle runs with less directional scatter

(thereby indicating the target's direction with greater preci-

sion) than she would if she were advertising a spacious

patch of flowers (Weidenmiiller and Seeley, 1999). More-

over, she skillfully adjusts both the duration and the rate of

her production of waggle runs in relation to the desirability

of her site (Seeley and Buhrman, 2001 ). and she gradually

reduces the number of waggle runs produced per return to

the swarm over sequential returns (Seeley. unpubl.l. All of

these tunings of her dance behavior are important to the

consensus-building process whereby the scouts of a swarm

collectively choose its new home. Once the swarm's domi-

cile has been chosen, our scout somehow senses this, ceases

waggle dancing, and starts producing a different signal,

called u-int>.<i-ti>!>i'tlier piping. This signal stimulates the

non-scouts in the swarm to warm themselves to a flight-

ready temperature (35C) in preparation for liftoff (Seeley

and Tautz, 2001 ). Finally, once all the bees in the swarm are

suitably warmed, the scout stops piping and starts producing
a third signal, called buzz running, which triggers the

break-up of the cluster (Lindauer, 1955; Esch, 1967).

There can be no doubt that a worker honeybee is a

sophisticated piece of biological machinery; one that is

exquisitely sensitive to its environment and that makes

intricate adjustments of its behavior in adaptation to the

ever-changing state of its environment. After all, the sketch

lust painted of a scout bee's actions does not capture the full

complexity of her behavior, and the complexity of a scout

bee's behavior is but a small fraction of the full complexity

of a worker bee's behavior across her life (when she also

functions as a cleaner bee, nurse bee, food-storer bee. for-

ager bee. etc.). Such complexity in the behavior of a worker

bee shows us that the subunits in a self-organized system

can possess a high level of cognitive sophistication. This

fact must be kept in mind by investigators of self-organiza-

tion in biological systems, especially systems that are ani-

mal groups, lest we hold a falsely simplified view of life.
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